
MC 2019 Part  3
Basics of Probability 
theory and statistical 

signal processing

Hirokazu Tanaka



Topics to be covered today. 

1. Entropy – it’s origin in physics and information theory.

2. Markov process, H-theorem and renormalization group.

3. Random variable theorem and central limit theorem.

4. Independent component analysis as inverse of CLT.

5. Matrix decompositions and non-negative matrix factorization.

6. Tensor decompositions: PARAFAC and Tucker decompositions.

7. Task-related component analysis and its extensions.



Topics NOT covered today.

• Linear causality analysis methods:
- Granger causality (Granger, 1967; Geweke, 1982).
- Partial directed coherence (PDC) (Baccala & Sameshima, 2001).
- Directed transfer function (DTF) (Kaminski et al., 2001).

• Nonlinear dynamic analysis methods:
- Delay differential embedding (DDM) (Lainscsek et al. 2015).
- Convergent cross mapping (CCM) (Sugihara et al. 2012).

• Non-additive, multiplicative data decomposition:
- Holo-Hilbert spectral analysis (Huang et al. 2016).

• Dictionary learning
- Matching pursuit (MP) (Mallat & Zhang, 1993).
- K-SVD (Aharon et al., 2006).
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Many facets of entropy. 

• Clausius entropy (1850?)

• Boltzmann entropy (1872)

• Gibbs entropy (1902)

• Shannon entropy (1949)
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Entropy: from gas theory to probability.

Boltzmann: 
kinetic theory of gas

Gibbs: statistical mechanics of 
physical systems

Shannon: random variables



Boltzmann entropy as a number of microstates.

• Ludwig Boltzmann (1844-1906)
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Multinomial coefficients.

• Multinomial theorem for a positive integer m and a non-negative 
integer n:

• Multinomial coefficient:
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Multinomial coefficients.

• The Boltzmann Entropy is defined as a normalized log of multinomial 
coefficient:

The identity of multinomial coefficients is translated in one of 
entropies:
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Shannon entropy based on probability.

• Shannon (1948) A mathematical theory of communication.
• Suppose that X is a random variable and that its sample 

space is                   . Then the entropy of the random 
variable is defined as:

• Note: the Gibbs entropy and the Shannon entropy have 
the same mathematical form. However, they differ in their 
implications: the Gibbs entropy assumes some physical 
systems while the Shannon entropy pertains to abstract 
random variables.
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Gibbs-Shannon entropy based on probability.

• Gibbs-Shannon entropy as a thermodynamic limit of 
Boltzmann entropy:

• In the limit of infinite N:
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Stirling’s formula for approximating factorial.

• Factorial of N is approximated when N is large: 

• Derivation up to the leading order:

• More systematic derivation to higher order… (see, e.g., Mermin
1984)
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Digression: Wallis’ product formula for π.

• Why “π” in approximating a product of integers?

• Factorial of N is approximated when N is large: 
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Digression: Wallis’ product formula for π.

• Derivation: Consider an following integral with large n:

This integral is evaluated exactly by expanding the cosine:

This integral is evaluated approximately by replacing the cosine with a 
Gaussian:

Then we obtain:
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Digression: Wallis’ product formula for π.
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Digression: Numerical formulae for the Napier number.
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Axiomatic derivation of Shannon entropy.

Shannon’s definition of entropy:

1. Continuity: the entropy is a continuous function of {pi}.

2. Monotonicity: if all n states are equiprobable with the probability 1/n, 
the entropy depends only on n and is a monotonically increasing 
function of n.

3. Compositionality: 
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Compositionality: Coarse graining + microscopic detail.

• Entropy of m possible states is decomposed into a sum of entropy of 
(m-1) states and entropy of two states. 

• In other words, the entropy is decomposed into a coarse-grained 
part and a microscopic detail.
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Compositionality: Coarse graining + microscopic detail.

• Entropy of m possible states is decomposed into a sum of entropy of 
(m-1) states and entropy of two states (compositionality). 

• Using the compositionality, 

is satisfied by logarithmic function:

( ) 1 1, ,Hm m m
f m  =  

 


( ) ( ) ( )f mn f m f n= +

( ) log .f n K n=



Axiomatic derivation of Shannon entropy.

Shannon’s definition of entropy:
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Axiomatic derivation of Shannon entropy.

Shannon’s definition of entropy:
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Axiomatic derivation of Shannon entropy.

Shannon’s definition of entropy:
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Entropy as a measure of information coding.

• Consider a random variable with the sample space Ω and the probability:

• How many bits are necessary to code a sequence of random numbers:

• For an unbiased dice, the Shannon entropy is log26.

• For a biased dice that shows up only 1 and 2 with probability ½ each, the 
Shannon entropy is log22=1.
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Entropy: from gas theory, physical systems to probability.

Boltzmann: 
kinetic theory of gas

Gibbs: statistical mechanics of 
physical systems

Shannon: random variables



Differential entropy: entropy for a continuous variable.

• Shannon entropy for a discrete random variable X:  

• Differential Shannon entropy for a continuous random variable X:

Note: The differential entropy is not invariant to a variable transformation 
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Differential entropy: entropy for a continuous variable.

• Differential Shannon entropy for a continuous random variable X:

Note: The differential entropy is not invariant to a variable transformation:

The probability density of y:
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Conditional entropy:

• Consider (not necessarily independent) two random variables X and 
Y:

• Entropy of the variable X given that Y takes a particular value y:

• Taking the mean over Y defines the conditional entropy of X given Y:

• If X and Y are dependent on each other, knowing about Y reduces 
the uncertainty of X. Therefore,  

( ) ( ) ( ), , ,X XYYp x p y p x y

( ) ( ) ( )H | | log |X y dxp x y p x y= −∫

( ) ( ) ( ) ( )H | H | , log |X Y dy X y dydxp x y p x y= = −∫ ∫

( ) ( )H H |X X Y≥



Conditional entropy.

• Conditional entropy
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Kullback-Leibler divergence.

• KL divergence for a discrete random variable:

• KL divergence for a continuous random variable:

• Question: why not using an ordinary Euclidean distance?
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Kullback-Leibler divergence.

• How to determine the “distance” between two density functions, 
p(x) and q(x)?

• Example 1: two normal densities with an equal variance.
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Kullback-Leibler divergence: multivariate normal distribution.

• Example 2: two multivariate normal densities.

• Note:
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Kullback-Leibler divergence.

• How to determine the “distance” between two probabilities,        and   
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Kullback-Leibler divergence

• KL divergence for a continuous random variable is reparametrization
invariant. Consider a transformation: 

Under this transformation, the probability is conserved

and the density functions are transformed as:

Therefore, the ratio of p to q remains invariant 

while the square needs an additional factor,

Therefore, the square norm depends particular parametrizations. 
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Digression: why “H” for entropy?

• From German Entropie, coined in 1865 by Rudolph 
Clausius, from Ancient Greek ἐντροπία (entropía, “a 
turning towards”), from ἐν (en, “in”) + τροπή (tropḗ, “a 
turning”).

• Evidence for Boltzmann’s H as a capital eta

“… this H, like all other Greek letters in the book, is printed 
vertical (nonslanted), while capital Latin letters are printed 
in italics (slanted types).”

https://en.wiktionary.org/wiki/entropy

Hjalmars (1977) Am J Phys



Why is it called “entropy?”

• What's in a name? In the case of Shannon's measure the 
naming was not accidental. In 1961 one of us (Tribus) 
asked Shannon what he had thought about when he had 
finally confirmed his famous measure. Shannon replied: 
"My greatest concern was what to call it. I thought of 
calling it 'information,' but the word was overly used, so I 
decided to call it 'uncertainty.' When I discussed it with 
John von Neumann, he had a better idea. Von Neumann 
told me, 'You should call it entropy, for two reasons. In the 
first place your uncertainty function has been used in 
statistical mechanics under that name, so it already has a 
name. In the second place, and more important, no one 
knows what entropy really is, so in a debate you will always 
have the advantage.' “ (Tribus & McIrvine (1971) Sci Am)



Topics to be covered today. 

1. Entropy – it’s origin in physics and information theory.

2. Markov process, H-theorem and renormalization group.

3. Random variable theorem and central limit theorem.

4. Independent component analysis as inverse of CLT.

5. Matrix decompositions and non-negative matrix factorization.

6. Tensor decompositions: PARAFAC and Tucker decompositions.

7. Task-related component analysis and its extensions.



Markov process: a process that depends on only one-step previous state.

( ){ }ip t ( ){ }1ip t +

( ) ( )( )Pri ip t s t s= =

( ) ( )
1

1i ij
i

j

N

p t q p t
=

+ =∑

1
1, 0

N

ij
i

ijq q
=

= ≥∑( ) ( )( )Pr 1 |ij i jq s t s s t s= + = =

ijq



H-theorem: non-decreasing entropy along time.

• In a Markov process, a non-increasing function can be defined.
• Let us introduce a concave function     of probability and see 

how it behaves in a Markov process. Using Jensen’s inequality,

Then, summing over the indices gives

Therefore, the function                   is a monotonically non-
decreasing function. A particular choice of     : 
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H-theorem: why does entropy increase?

• Intuition: entropy takes a large value when the probability is uniform.
• A time step in a Markov process is a weighted average over all 

probabilities.

Therefore, the minimum and maximum values of probability,

are non-decreasing and non-increasing functions of time, 
respectively.

• The distribution becomes more uniform and the entropy hence 
increases as time goes by.
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H-theorem: How can the entropy be reduced over time? 

• As seen in the previous slide, in a Markov process, 

the entropy is a non-decreasing function.

• There, all transition probabilities {q} are non-negative.

• Observation: If we consider “unphysical” transition 
probabilities that take both positive and negative values, 
the entropy is no longer a non-decreasing function!

• This is an idea behind independent component analysis 
(we will come back later).
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A Markov process distinguishes future and past.

• A Markov process forward in time:

• A Markov process backward in time:
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A Markov process distinguishes the directionality of arrow of time!



Example: diffusion process and random walk.

• Diffusion equation:

Discretize the space into bins of Δx and the time into bins of Δt:
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Example: random walk (or diffusion).

• Random walk: transition matrix.

-> Inverse of transition matrix.
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H-theorem: How can the entropy be reduced over time? 
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Non-negative matrix: its inverse is not non-negative.

• For any irreducible non-negative square matrix A=(aij), its inverse is not 
generally non-negative (i.e., can be positive or negative).

• Proof: A-1 must satisfy the following for different I and j, and if A is non-
negative, A-1 must have some negative components.

• Exception is a monomial matrix (a generalized permutation matrix).

• Mixing (non-negative matrix) and un-mixing (its inverse) separate the 
arrow of time.
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H-theorem: How can the entropy be reduced over time? 
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Non-negative matrix: The Perron-Frobenius theorem.

For any irreducible non-negative square matrix A=(aij):
• There is a unique largest real eigenvalue r.

• The corresponding eigenvector has strictly positive components.

• The eigenvalue r satisfies the inequalities:

Therefore, for a Markov transition matrix, the Perron-Frobenius eigenvalue is 
1.
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i ij
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Renormalization group: a spin-system example. 

• Renormalization group describes how a physical system behaves when 
microscopic details of interaction are integrated out scale by scale.

• The original idea was introduced in particle physics in 1950s (Gell-mann & 
Low) and was extended to statistical physics in 1960s and 1970s (Kadanoff; 
Wilson).

• Particularly, renormalization group is a powerful method for understanding 
long-range behaviors at a critical point (i.e., phase transition).

Kenneth G. Wilson (1936-2013)



Renormalization group: a spin-system example. 

• Step 1: Replace a group of local spins with their representative value 
(usually their average):

is js

ks ls



Renormalization group: a spin-system example. 

• Step 2: Rescale the spacing distance so that the transformed lattice has the 
same spacing of the original lattice.

is′ js′

ks′ ls′



Renormalization group: a spin-system example. 

• Step 3: Compute the Hamiltonian (or the interactions) of the transformed 
system from the Hamiltonian of the original system. 
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Renormalization group: a spin-system example. 

• Renormalization group describes how the system behaves when the 
microscopic details are integrated out.

• However, the explicit computation of this transformation is usually 
intractable.

• We will see that the central limit theorem is a simplest but non-trivial 
example of renormalization group.
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Mechanical computation of matrix inversion in 1944.

九元連立方程式求解機: 1944年ころ 航空研究所製
アメリカのウィルバーは、1936（昭和11）年に土木の構造解析や経済学上の計算を行える機
会を考案、制作した。本機はその情報を元に東京帝国大学航空研究所の佐々木達治郎や志
賀亮、三井田純一らが1944（昭和19）年に作成した国内初の大型計算機械である。



Mechanical computation of differential equations.



Topics to be covered today. 

1. Entropy – it’s origin in physics and information theory.

2. Markov process, H-theorem and renormalization group.

3. Random variable theorem and central limit theorem.

4. Independent component analysis as inverse of CLT.

5. Matrix decompositions and non-negative matrix factorization.

6. Tensor decompositions: PARAFAC and Tucker decompositions.

7. Task-related component analysis and its extensions.



Random variable transformation (RVT) theorem.

• Suppose that n-dimensional random variables

have a joint density function:

• If m-dimensional variables 

are uniquely determined from x by a mapping

derive a joint density function for y.
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Random variable transformation (RVT) theorem.

• A joint density function for y:

or in an element form:

• From this theorem, a number of important results are derived: the 
central limit theorem, common probability density functions 
(lognormal, chi-square, and Student’s t), the imposition of 
constraints, sampling of normal distribution, and the chi-square 
goodness-of-fit test.
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Random variable transformation (RVT) theorem.

• A simple transformation: a variable y is a sum of x1 and x2. 

then, the density of y is given by

If x1 and x2 are i.i.d., then
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Random variable transformation (RVT) theorem.

• A simple transformation: a variable y is a sum of x1 and x2. 

• Following the same reasoning that derived the H-theorem, 
for any concave function, we have:

By integrating over y, we now have:
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Random variable transformation (RVT) theorem.

• The inequality is now

• If we define the convex function as 

and the entropy as

then, we see that the entropy is a non-decreasing 
function.
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Law of large number.

• Consider a set of n i.i.d. random variables Xi with mean μ
and variance σ2:

• Let us introduce a new random variable defined as:

• The law of large number: In the limit of infinite n, the 
distribution of the new variable becomes Dirac’s delta 
function peaked at μ :
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Law of large number: derivation.

• Let us consider a variable Y:

Applying the RVT:

Therefore, the characteristic function of Y is a power of the 
characteristic function of X:
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Law of large number: derivation.

• In the limit of infinite n, only the first moment (mean) survives and 
the higher moments will vanish:

• Therefore, the density of the variable Y approaches to the delta 
function peaked at <X>.
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Central limit theorem.

• Consider a set of n i.i.d. random variables Xi with mean 0
and variance σ2:

• Let us introduce a new random variable defined as:

• The central limit theorem (CLT): In the limit of infinite n, 
the distribution of the new variable becomes a Gaussian 
distribution with mean 0 and variance σ2:
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Central limit theorem: sketch of derivation.

• As in the case of law of large number: 

In the limit of large n, only the second moment survives and the 
higher moments vanish:

• Therefore, the density function of Y approaches to a normal density.
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Central limit theorem as renormalization group.

• Consider a set of i.i.d. 2n random variables X(0).

“Block-spin” transformation of random variables:
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Central limit theorem as renormalization group.

• Renormalization group of moments:
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Central limit theorem as renormalization group.

• Renormalization group of moments:
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CLT as renormalization group transformation.

• Higher-order cumulants decrease after each iteration of the 
transformation:

• Therefore, “the microscopic details” of the original distribution 
forget iteration by iteration, approaching to a Gaussian distribution. 
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Maximum entropy principle 

• Principle of insufficient reasoning (Laplace)
Two events are to be assigned equal probabilities of there 
is no reason to think otherwise.

• Principle of maximum entropy (Janes)
Distributions are determined so as to maximize the 
entropy (as a measure of uncertainty) in a way consistent 
with given measurements.
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Maximum entropy derivation of Boltzmann distribution.

• Find the maximum entropy distribution

with the normalization and the energy constrains:

• This problem is solved by introducing an augmented Lagrangian:

This gives the Boltzmann distribution of canonical states:
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Topics to be covered today. 

1. Entropy – it’s origin in physics and information theory.

2. Markov process, H-theorem and renormalization group.

3. Random variable theorem and central limit theorem.

4. Independent component analysis as inverse of CLT.

5. Matrix decompositions and non-negative matrix factorization.

6. Tensor decompositions: PARAFAC and Tucker decompositions.

7. Task-related component analysis and its extensions.



Independent component analysis as an inverse of central limit theorem.

• Physical processes that mix independent signal sources with positive 
coefficients increase the entropy of observed signals.

• In other words, observed signals are more “Gaussian-like” than 
original signal sources.

• We don’t know either of mixing coefficients and distributions of 
original sources; reconstructing original sources from observed 
signal is an ill-posed problem.

• However, if it is possible to construct variables from observed data 
that differ as much from Gaussian as possible, they should be simila
to independent sources.



Independent component analysis: A linear formulation.

• Generative model

• Linear unmixing
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Independent component analysis: A linear formulation.

• The goal of ICA is to estimate the unmixing matrix W and the source 
signals s:

• The signals are recovered if

where Pπ is a permutation matrix. 

• The Amari index:  
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Rank-one matrix decomposition 

( ) ( )
1

N

n t tt nt n n
n

nn
x a s ′

′=
′= = =∑x As

=X AS

[ ]

11 1 1

1 1

1

t T

N T
n nt nT t T

N Nt NT

x x x

x x x

x x x

×

 
 
 
 = =
 
 
 

∈



X x x x

 

  

  

  

 

[ ]

11 1 1

1 1

1

t T

N T
n nt nT t T

N Nt NT

s s s

s s s

s s s

×

 
 
 
 = =
 
 
 

∈



S s s s

 

  

  

  

 



Rank-one matrix decomposition of a matrix. 

11 1 1 11 1 1
T T
1 1

T T

T T

1 1

1 1

,

t T t T

N T N T
n nt nT n nt nT

N Nt NT N N

n n

t TN N N

x x x s s s

x x x s s s

x x x s s s

× ×

      
      
      
      = = = =
      
      
            

∈ ∈

x s

X Sx s

x s

   

     
 

 

     
 

   

[ ]

T
1

TT

1

T

T T T
11 2 2

1

           

N

nnn

N

n
n

N

N N

=

 
 
 
 = = =
 
 
  

= + + +

∑

s

X AS a a a a ss

s

a s a s a s



 







Positive weight mixing in physical phenomena.

• Physical processes mix source signals with positive coefficients.
• In other words, observed signals are weighted averages of source 

signals.
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The observed signals {xi} are more “Gaussian-like” than the source 
signals {si}.



ICA: various approaches toward “non-Gaussianity.”

• Mutual information as a measure of independence (InfoMax,
extended InfoMax, AMICA) (Bell & Sejnowski, 1995; Lee et al. 1999)

• Moment-based method: Kurtosis maximization (FastICA) (Hyvarinen
& Oja, 1997). 

• Joint-diagonalization (JADE, SOBI) (Cardoso, 1997; Belouchrani et al. 
1997)
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Infomax learning algorithm (1/3): mutual information.

• Find mutually independent components by minimizing the KL 
divergence:

• Applying a formula, 
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Infomax learning algorithm (2/3): Matrix derivative:

• Taking the derivative with respect to W:

or in a matrix form:

• The infomax learning algorithm (Bell & Sejnowski, 1995):
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Infomax learning algorithm (3/3): Natural gradient.

• The gradient itself is not a steepest direction – it has to be multiplied 
by WTW from the right:

• The natural-gradient infomax algorithm (Amari 1998):

Here the factor in the parenthesis is regarded as nonlinear 
decorrelation.
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Choice of the score function: super- or sub-Gaussian.

• The score function realizes our prior expectation about the source 
distribution: 

Originally, py(y) is assumed to be super-Gaussian (Bell & Sejnowski):

• Later, py(y) is assumed to be super- or sub-Gaussian (Lee et al.): 

Often called as “extended infomax algorithm.”

( ) ( )log yp y
y

y
ϕ

∂
= −

∂

( ) ( ) ( ) ( )1 tanh
coshyp y y y

y
ϕ∝ ⇒ =

( ) ( ) ( ) ( )

2

2
super

2 1 tanh
cosh

y

y
ep y y y

y
ϕ

−

∝ ⇒ = +

( ) ( ) ( ) ( ) ( )sub 1 ; 1,1 ; 1,1 1 tanh
2yp y y y y yϕ= − + + ⇒ = −   



Amari index: Performance measure of ICA.

• In general, the unmixing matrix is not determined uniquely up to 
scaling and permutations.

• Therefore, the Amari index for a matrix G is:

The index takes a maximum value of 1 when G is a generalized 
permutation matrix.
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ICA Example 1: Sound source separation. 

Bell & Sejnowski (1995) Neural Comput



ICA Example 2: EEG source separation. 

Onton & Makeig (2006) Prog Neurobiol



ICA Example 4: Independent components of natural scenes.

Bell & Sejnowski (1997) Vis Res.



ICA Example 5: Cochlear filters as independent sound sources. 

Smith & Lewicki (2006) Nature



Topics to be covered today. 

1. Entropy – it’s origin in physics and information theory.

2. Markov process, H-theorem and renormalization group.

3. Random variable theorem and central limit theorem.

4. Independent component analysis as inverse of CLT.

5. Matrix decompositions and non-negative matrix factorization.

6. Tensor decompositions: PARAFAC and Tucker decompositions.

7. Task-related component analysis and its extensions.



Matrix decompositions in linear algebra.

• Eigenvalue decomposition.

• Singular value decomposition.

• Cholesky decomposition.

• LU decomposition.

• QR decomposition.

• Schur decomposition.



Non-negative matrix factorization (NMF).

• Many kinds of data are non-negative (e.g., images, texts, spectrum, EMG, 
…).

• Approximating an M×N non-negative matrix Y

as a product of M×K non-negative matrix A and K×N non-negative matrix 
X:

• Solve a constrained optimization problem: 
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Frobenius norm of matrix.

• The Frobenius norm of a matrix is defined

• A derivative of the norm is 

• Using this property, the derivative of the squared-error is
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Least squares solution.

• Thus, if no non-negative constrains are imposed, 

then, the solution simply becomes:

• However, when A and X are required to be non-negative, the 
algorithm becomes a bit complicated…
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Three approaches to non-negativity.

1. Alternate least squares (ALS) method.

2. Karush-Kuhn-Tucker (KKT) method.

3. Auxiliary variable method.



Solution 1: Alternating Least squares (ALS) solution.

• A least-squares solution with no non-negativity constraints:

• The ALS algorithm chops off negative components and leaves only 
non-negative components

and iterate until convergence.
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Solution 2: KKT conditions of constrained optimization (1/5).

• Minimize

subject to 

• Lagrange multiplier method: an augmented Lagrangian

with non-negative Lagrange multiplier 
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Digression: Karush-Kuhn-Tucker (KKT) condition (2/5).

• Constrained optimization problem:

Minimize               subject to 

• Lagrange multiplier method: an augmented Lagrangian

• KKT condition for optimality:
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Solution 2: Multiplicative learning algorithm  (3/5).

• The KKT condition
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Solution 2: Multiplicative learning algorithm  (4/5).

• A multiplicative learning algorithm

or elementwise

• To solve the simultaneous equations, a fixed-point method is used as
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Solution 2: Multiplicative learning algorithm  (5/5).

• A multiplicative learning algorithm (elementwise form):

or in matrix form:

where      and     stand  for elementwise multiplication and division, 
respectively.
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Solution 3: Auxiliary function method.

• Definition: a function g(x, λ) is called an auxiliary function of f(x) if 

• A local extrema of f(θ) can be found by iteratively updating θ and λ:

• Proof:
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Solution 3: Auxiliary function method.

• Jensen’s inequality for a convex function:

The l.h.s. is a nonlinear function of the sum (therefore {xi} are 
coupled); the r.h.s is a sum of nonlinear functions (therefore {xi} are 
decoupled). 

• A choice of auxiliary function may be constructed by:
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Solution 3: Auxiliary function method.

• The original cost function: 

• Using Jensen’s inequality:

An auxiliary function:
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Solution 3: Auxiliary function method.

• Auxiliary function:

• For the auxiliary variables, with the normalization constraint,

• By taking the derivatives of matrix components:
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Solution 3: Auxiliary function method.

• Eliminating the auxiliary variables, 

• Then, the multiplicative update rule is:
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NMF Example: Text mining of neuroimaging literature. 

• 272 papers on posterior cingulate cortex (PCC); NMF automatically 
finds the topics related to PCC, such as memory and pain.

Nielsen et al. (2005) NeuroImage



NMF Example: Structural MRI.

• Comparison of PCA, ICA, and NNMF applied to structural MRI data. 
• The results of PCA and ICA are non-sparse and difficult to interpret; 

the results of NNMF is sparse and easy to interpret.

Sotiras et al. (2015) NeuroImage



Topics to be covered today. 

1. Entropy – it’s origin in physics and information theory.

2. Markov process, H-theorem and renormalization group.

3. Random variable theorem and central limit theorem.

4. Independent component analysis as inverse of CLT.

5. Matrix decompositions and non-negative matrix factorization.

6. Tensor decompositions: PARAFAC and Tucker decompositions.

7. Task-related component analysis and its extensions.



Rank-one matrix and tensor decompositions

• A rank-R I×J matrix X may be decomposed into a sum of rank-one 
matrices as:

Here 

• Similarly, a three-way tensor may be decomposed into a sum of rank-
one tensors as:
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Tensors as a natural extension of vectors and matrices.

• Neuroimaging data often consist of multi-dimensional arrays more 
than two-dimensions.

• EEG: frequency, time, channels, trials, subjects, conditions, …

Cichocki et al. (2008) IEEE Computer



Tensors as a natural extension of vectors and matrices.

• Vector:

• Matrix:

• N-way Tensor:

( )T
1 ,i I

Iv v v= ∈v   

T
11 1 1

1

1

,

j J

J
i ij iJ

I Ii I

I

J

a a a

a a a

a a a

×

 
 
 
 = ∈
 
 
 
 

A

 

   

  

   

 

( ) 2

2

1

1
.N

Ni
I I I

i ix × ×= ∈X 







Mode-n tensor-matrix multiplication.

• N-way Tensor:

• In×Jn matrix 

• n-mode tensor-matrix multiplication:
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Tensor approximation (1): Canonical polyadic (CP) decomposition.

• three-way Tensor:

• CP decomposition:
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Tensor approximation (2): Tucker decomposition.

• three-way Tensor:

• Tucker decomposition.
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CP decomposition is unique under mild conditions.

• 3-way Tensor case:

• CP decomposition 

is unique if
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Least squares fitting of CP decomposition.

• CP decomposition: Minimize the squared error:

• Tucker decomposition: Minimize the squared error:
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mode-n Matricization of three-way tensor.

• three-way Tensor:
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Least squares fitting of CP decomposition.

• CP decomposition:

• Squared-error cost function:
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Alternative least-squares (ALS) algorithm.

• CP decomposition:

• If there is no constraint on the matrices, then

• When non-negativity constraints are imposed:
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Alternative least-squares (ALS) algorithm.

• CP decomposition:
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Alternative least-squares (ALS) algorithm.

• When non-negativity constraints are imposed:

1. Given B and C, update the matrix A: 

2. Given C and B, update the matrix B: 

3. Given A and B, update the matrix A: 

4. Repeat 1-3 until convergence.
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CP decomposition example: causal network analysis.
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Chao et al. (2015) eLife



Tensor ICA for group analysis.

• Neuroimaging data often has more than two indicies.
- (1) time, (2) space, and (3) subject:

• For fMRI data, spatial maps are often assumed to be mutually 
independent. 

• Problem: given the data tensor X, find the independent components 
B and the unmixing matrix W

so that the matrix W has a form of Khatri-Rao product:
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Topics to be covered today. 

1. Entropy – it’s origin in physics and information theory.

2. Markov process, H-theorem and renormalization group.

3. Random variable theorem and central limit theorem.

4. Independent component analysis as inverse of CLT.

5. Matrix decompositions and non-negative matrix factorization.

6. Tensor decompositions: PARAFAC and Tucker decompositions.

7. Task-related component analysis and its extensions.



Two approaches in neuroimaging data analysis.

• Hypothesis-driven approach
- General linear models (GLMs).

• Data-driven approach
- Principal component analysis (PCA), independent component 
analysis (ICA), factor analysis (FA).



Task-related reproducibility as an criterion.

• Hypothesis-driven approach (Friston et al. 1994)
- General linear models (GLMs).
-- Pros: Explicit testing of a hypothesis

“Popperian” (hypothesis generation, refutation and design) 
-- Cons: Scientifically valid hypothesis is needed; only modelled 
hypotheses are examined.

• Data-driven approach (Makeig et al. 1997; McKeown et al. 1998)
- Principal component analysis (PCA), independent component 
analysis (ICA), factor analysis (FA).
-- Pros: No a priori assumption about hypotheses.
-- Cons: Expert interpretations and expertise needed.

Friston, K. J. (1998). Modes or models: a critique on independent component analysis for 
fMRI. Trends in cognitive sciences, 2(10), 373-375.

Makeig et al. (1998). Response from McKewon, Makeig, Brown, Jung, Kindermann, Bell and 
Sejnowki.



Brain timing cannot be estimated from external events.
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Task-related component analysis: Formulation (1/2).

• Construct a time series as a weighted sum:

• TRCA proposes to maximize a sum of inter-block covariances:

under the condition that the variance is constrained to one:
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Task-related component analysis: Formulation (2/2).

• TRCA is equivalent to maximizing the Rayleigh-Ritz quotient:

• A solution of this maximization problem is given as eigenvectors of 
the matrix: 

Then the solutions are:

ˆ arg max
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Task-related component analysis: Matlab code.

function [Y, V, D, S, Q] = TRCA_SATO(X, t1, Nexp)

Nchannel = size(X, 1);
Nblock = length(t1);

% data of task duration
Xb = zeros(Nchannel, Nexp+1, Nblock);
for i=1:Nblock

Xb(:, :, i) = X(:, t1(i):t1(i)+Nexp) - repmat(mean(X(:, t1(i):t1(i)+Nexp),2),1,Nexp+1);
end

% computation of correlation matrices:
S = zeros(Nchannel);
for i=1:Nblock-1

for j=i+1:Nblock
S = S + Xb(:, :, i)*Xb(:, :, j)';

end
end
S = S+S';

X = X -repmat(mean(X,2),1,size(X,2));
Q = X*X';

% TRCA eigenvalue algorithm
[V, D] = eig(Q\S);
Y = V'*X;

function [Y, V, D, S, Q] = TRCA(X, t1, Nexp)

Nchannel = size(X, 1);
Nblock = length(t1);

% data of task duration
Xb = zeros(Nchannel, Nexp+1, Nblock);
for i=1:Nblock

Xb(:, :, i) = X(:, t1(i):t1(i)+Nexp) - repmat(mean(X(:, t1(i):t1(i)+Nexp),2),1,Nexp+1);
end

% computation of correlation matrices:
S = zeros(Nchannel);
for i=1:Nblock-1

for j=i+1:Nblock
S = S + Xb(:, :, i)*Xb(:, :, j)';

end
end
S = S+S';

X = X -repmat(mean(X,2),1,size(X,2));
Q = X*X';

% TRCA eigenvalue algorithm
[V, D] = eig(Q\S);
Y = V'*X;

“Blocking” of 
continuous data

Computation of S matrix

Computation of Q matrix

Eigenvalue computation



Original data Eigenvectors

Resampled distribution

Statistically significant task-related components
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Task-related component analysis: right finger tapping. 

Time 
(s)

Time (s)



Task-related component analysis: left finger tapping. 

Time 
(s)

Time (s)



TRCA discriminates oxygenation and CBV (1/2).



TRCA discriminates oxygenation and CBV (2/2).



Brain timing cannot be estimated from external events.

• A number of important cognitive functions (e.g. motor intention and 
visual awareness) are not necessarily time-locked to an external 
event.

motor intention: left or right?

Visual awareness: face or vase?



Estimation of event timings from EEG series per se.

• Change detection of dynamic connectivity.
- Assumption: Brain network transits from one state to another.
-- functional connectivity (temporal correlation) (Allen et al. 2014)
-- phase synchronization 

• Detection of recurring wave forms.
- Assumption: a certain brain event is associated with same EEG patterns.
-- dictionary learning (Brockmeier & Principe ,2016)
-- sliding window matching (Gips et al., 2016) 



Spatio-temporal filtering for finding recurrent waves.

• Not only the spatial weights {w} but also the timings {tk} are optimized.

w1

w2

x1(t)

x2(t)

xN(t)

wN

y(t)…
…

1t 2t 3t 4t 5t



Spatio-temporal filtering for finding recurring waves.

• So far, the block timings have been assumed to be known a priori.
TRCA optimizes a spatial filter when block timing are provided. 

• Here, the experimental timings, 

are also optimized:
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TRCA Sliding Window Matching (TRCA-SWM) algorithm.

1. Initialize the timing vector t by randomization or according to 
experimental data.

2. With the initial timing vector, find an optimal weight vector by 
solving

3. Perturb the timing vector and compute a new weight vector.

4. Accept the perturbed timing vector according to MCMC algorithm; 
otherwise reject.

5. Repeat Step 3 and Step 4 until some convergence criteria are met.

( ) ( )T

Tmax=
w

w S t w
w t

w Qw



TRCA-SWM: Matlab code.

while iter<maxIterations
% generate trial move:
k = randi(K);   % randomly picked timing.
Ttrial = T;
Ttrial(k) = Ttrue(k) + randi([-50 50]); % perturb the picked timing.

% evaluate the trial move:
Jtrial = TRCAs(X, Ttrial, L);

% accept or not:
Pacc = exp(-(Jtrial-J)/Temp);
if rand<Pacc

T = Ttrial; J = Jtrial;
disp([num2str(iter) '-th trial: move accepted, J: ' num2str(J)]); 

else
disp([num2str(iter) '-th trial: move rejected, J: ' num2str(J)]); 

end

% update the optimum:
if J<J0

iter0 = iter; J0 = J; T0 = T;
end

Jall(iter) = J; iter = iter + 1;
end

Perturb timing vector.

Accept or reject the 
perturbation.

If accepted, update 
the optimum.



TRCA vs TRCA-SWM: more reproducible components are found.

TRCA-SWM

TRCA



TRCA vs TRCA-SWM: more reproducible components are found.



Topics to be covered today. 

1. Entropy – it’s origin in physics and information theory.

2. Markov process, H-theorem and renormalization group.

3. Random variable theorem and central limit theorem.

4. Independent component analysis as inverse of CLT.

5. Matrix decompositions and non-negative matrix factorization.

6. Tensor decompositions: PARAFAC and Tucker decompositions.

7. Task-related component analysis and its extensions.



To be continued: topics NOT covered today.

• Linear causality analysis methods:
- Granger causality
- Partial directed coherence (PDC)
- Directed transfer function (DTF)

• Nonlinear dynamic analysis methods:
- Delay differential embedding (DDM)
- Convergent cross mapping (CCM)

• Non-additive, multiplicative data decomposition:
- Holo-Hilbert transform.

• Dictionary learning
- Matching pursuit (MP)
- K-SVD
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Appendix A: Jensen’s inequality for a convex function (1/2).

• For a convex function f : the value of function at 
intermediate point is smaller than or equal to the average 
of the function.
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Appendix A: Jensen’s inequality for a convex function (2/2).

• For a convex function f :

[Proof] For three points:

The same proof for N-point case.
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Appendix B: Log-sum inequality.

• Logarithm is a concave function.

• [proof]: Use 
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Digression: Convex (凸) and concave (凹) functions.

• “Mathematical Stroop”:

( )( ) ( ) ( ) ( )21 2 11 1x xx x ff fα α α α+ −≤+ − ( )( ) ( ) ( ) ( )21 2 11 1x xx x ff fα α α α+ −≥+ −

• Convex function
• 凸関数

• Concave function
• 凹関数



Appendix: Matrix derivative of a determinant.

• Derivative of determinant of matrix A:

• [Proof]: The determinant of A is expanded by its cofactors:

The inverse of A is also expressed by the cofactors:
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Appendix: Measures for matrix distance.

• Frobenius norm:

• Kullback-Leibler divergence:

• Itakura-Saito divergence:
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Appendix: Beta matrix divergence.

• Beta divergence:

• Note that: 
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Appendix: Kronecker product.

• The Kronecker product of matrices 

is defined as

also written as:
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Appendix: Khatri-Rao and Hadamard product.

• The Khatri-Rao product of matrices 

is defined as

• The Hadamard product of matrices

is defines as
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Appendix: Some properties of matrix products.

( )( )⊗ ⊗ = ⊗A B C D AC BD

( )† † †⊗ = ⊗A B A B

( ) ( )= =A B C A B C A B C     

( ) ( )T T T=A B A B A A B B  

( ) ( ) ( )( ) ( )
†† TT T=A B A A B B A B 
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